
Toolkit Productivity Tools v 1.2.0

Developer Handbook

tpt

Table of Contents
Introduction 4

Architecture 5

Configuring an application to use TPT 6

Dependencies 7

TPT components and functions reference 8

Application core services 8

Getting an application instance 8

Application-specific one-time initialization 8

Application instance aware threads 8

Transaction start and end callbacks 9

Closing the application 9

Internationalization 10

Creating and managing the resource files 10

Initializing the internationalization module 11

Querying for translated string 11

Translating custom layout templates 12

Common Dialogs 13

Option Dialogs 13

Simple Message Dialog 13

Confirmation Dialog 14

Question Dialog 14

Cancellable Question Dialog 15

Custom Message Dialog 15

Input Dialogs 16

Download Dialog 17

Common Windows 19

tpt Toolkit Productivity Tools - Developer Handbook

2

TPTWindow 19

TPTHtmlWindow 19

Widgets 20

TPTMultiView 20

Creating a view controller 20

Adding views into the controller 21

Switching between views 22

Passing parameters to a views 22

Listening to view lifecycle events 23

TPTLazyLoadingLayout - a layout to help organizing long initializing UIs 24

PDF Document Viewer 25

Generic usage pattern 25

Controlling zoom factor and page navigation 26

TPTMessagePanel 25

Limitations and known issues 26

Common cluster environment limitations 26

Google AppEngine issues 26

JEE6 issues 26

tpt Toolkit Productivity Tools - Developer Handbook

3

Introduction
Toolkit Productivity Tools (here and later - TPT) is a companion library to an excellent

rich UI web based java framework Vaadin. The main’s TPT goal is to provide most common
functions, elements, patterns and classes, which are typically used with any Vaadin-
based application but is not present in Vaadin core.

TPT has born in Alee Software, after a number of real Vaadin-based web applications
was developed and discovered that on each project startup, a number of the same
common things being made more and more. So, they was finally moved into the separate
library to be commonly used in all projects. Later on, it was decided to publish this library
as a stand-alone open source project to the net. TPT’s home is now at Google Code:
http://code.google.com/p/tpt

TPT provides the following commonly used functions for the Vaadin-based application:

• Internationalization support for widgets and html layouts
• Application instance services and multi-threading
• Common dialogs collection
• Common windows collection
• Widgets collection

This release is a first public version. It does not contain a number of new ideas, so I’ll
be updating it in 2010 frequently, stay tuned.

As always, your bug reports, new ideas and suggestions, contribution and participation
requests are always welcome to: tpt@livotov.eu

TPT distribution binary package contains the following (among others) major files:

- tpt.jar - the library itself. It is a pure server-side drop-n-forget jar, no widgetset
compilation necessary.

- tpt-demo.war - the small demo application of all TPT features. Deploy it to any app
server or servlet container and enjoy. You can also watch the most recent demo live at
http://demo.stor-m.ru/tpt-demo

- this documentation :)

tpt Toolkit Productivity Tools - Developer Handbook

4

http://vaadin.com
http://vaadin.com
http://code.google.com/p/tpt
http://code.google.com/p/tpt
mailto:tpt@livotov.eu
mailto:tpt@livotov.eu
http://demo.stor-m.ru/tpt-demo
http://demo.stor-m.ru/tpt-demo

Architecture
TPT consists in several layers - the core, the internationalization, the common dialogs

and windows collection, the widgets collection. In order to use any of TPT functions, a
core must be attached to the project.

Core services replaces the standard
Vaadin’s Application class with a
TPTApplication, which implements a
number of commonly used patterns and
provides a number of services for the
actual ancestor.

Internationalization module provides
services for automatic management of
dictionaries and translation of the user
strings. In addition, it provides
internationalization support for
Vaadin’s CustomLayout class to allow
internationalization of html layouts.

Threading module provides function to run a server-side threads with keeping the
automatic management of Vaadin application context, making it (and all functions
related to) transparently accessible from a thread as it was a main application thread.

Common windows is a set of enhanced Vaadin Window classes, adding the extra
functionality, such as automatic handling of keystrokes, setting the html background,
etc.

Common dialogs is a set of message and input dialogs, very similar to Swing’s
JOptionPane functions.

TPT Core Services

Internationalization Threading

Common Windows and Dialogs

Widgets

tpt Toolkit Productivity Tools - Developer Handbook

5

Configuring an application to use TPT
TPT consists from the single self-contained JAR file which needs to be added to the

application classpath (both runtime and development). As TPT does not contain any
client-side code, GWT widget recompilation and widgetset change is not required. You
may use TPT with any custom widgetset without any extra modifications.

In order to use any of TPT functions, it’s core must be attached to the application
project. To do this, simply replace Vaadin’s original Application class with the
TPTApplication in the definition of your application class as well as overridden init()
method to applicationInit() :

public MyApplication extends Application
{
 @Override
 public void init()
 {
 ...
 }

 ...

}

public MyApplication extends TPTApplication
{
 @Override
 public void applicationInit()
 {
 ...
 }

 ...
}

In TPTApplication, method init() is overridden internally to perform initialization of TPT
core services, so you must to move your own init code into the applicationInit() method
which will be automatically called by TPT on application startup. But if you want to use
the exact init(), you still can do this with the only one requirement: you must delegate
super.init() call in the first line on your init code to let TPT core services completely
initialize.

That’s all steps you have to perform in order to start using the TPT in your new or
existing application.

tpt Toolkit Productivity Tools - Developer Handbook

6

Dependencies
TPT mainly is a self-contained code and does not require any external libraries and jar

files, however, several component do require ones. The dependencies chart below
describes such components and set of jar files they depend on. If TPT component you’re
going to use is not listed in this chart, it does depend on any external files.

Component Depends on Where to get

DocumentViewer IcePDF core libraries when displaying
PDF documents. IcePDF engine is used to
render PDF files content.

IcePDF open source edition
files are included into the tpt-
demo.war file (WEB-INF/lib
folder):

- icepdf-core.jar

- icepdf-pro.jar

- icepdf-pro-intl.jar

Alternatively you can
download the latest version from
IcePDF web site: http://
www.icepdf.org

tpt Toolkit Productivity Tools - Developer Handbook

7

http://www.icepdf.org
http://www.icepdf.org
http://www.icepdf.org
http://www.icepdf.org
http://www.icepdf.org
http://www.icepdf.org
http://www.icepdf.org
http://www.icepdf.org
http://www.icepdf.com
http://www.icepdf.com
http://www.icepdf.com
http://www.icepdf.com

TPT components and functions reference

Application core services

Just by attaching the TPT to your project, you already get the set of useful functions
and patterns which may be used anywhere in your application and save your coding time.

Getting an application instance

Calling static method TPTApplication.getCurrentApplication() from any part of your
application will always return you the instance of your application. This is called as
“ThreadLocal” pattern on the Vaadin’s wiki and implemented by attaching a transaction
listener to your application as well as managing application instances on transaction
start and end. TPT does this all for your and you only need to call the
getCurrentApplication() method to get an instance to your application.

Application-specific one-time initialization

applicationInit() or just init() method in Vaadin is called on each application
instance startup. In some cases you may want to perform some common for all instances
initialization, e.g. perform this only one time, when first application is started. By using
TPT, you just override the firstApplicationInit() method and place your extra
initialization code there. This method will be called when only the first instance of your
application is started and after the original init() / applicationInit() method. For all
subsequent application startups, this method will be skipped. Note, that on multi-server
(clustered) environments, the firstApplicationInit() method may be, however, called
several times - one time per each server in a cluster. So you have to check such situations
in your code yourself.

Application instance aware threads

If you just start a new thread from within the application, the automatic reference
discovery via TPTApplication.getCurrentApplication() will be broken as application
instance manager does not know anything about this thread and thus cannot provide an
application instance for it when asked. To workaround such situations, you need to use
TPTApplication’s invokeLater(Runnable r) method:

TPTApplication.getCurrentApplication().invokeLater(new Runnable() {
 public void run()
 {
 // thread actual code
 }
 });

tpt Toolkit Productivity Tools - Developer Handbook

8

I n t h i s t h r e a d y o u c a n n o w f r e e l y u s e s u c h c o n s t r u c t i o n s a s
TPTApplication.getCurrentApplication() - reference between application instance and
this thread will be then automatically maintained.

Transaction start and end callbacks

Some applications require to catch the transaction life cycle events to get an
HttpServletRequest object or perform another operations. When your application object
extends TPTApplication, it is already has the transaction listeners attached, so you just
need to override the transactionStart(...) and transactionEnd(...) methods:

@Override
public void transactionStart (Application application, Object o)
{
 super.transactionStart (application, o);
 // your code goes here
}

@Override
public void transactionEnd (Application application, Object o)
{
 super.transactionEnd (application, o);
 // your code goes here
}

Note, that you must delegate call to super implementation of the corresponding
methods as a first line in order not to break TPT functionality, right as described in the
code example above.

Closing the application

Close your application as usual, by calling the method close() of your application
object. In some cases, you need to put your own code into the close() method as it is also
called automatically by the Vaadin when application closes because of the session
inactivity. TPT also manages it’s own shutdown code on application close, so if you’ll be
overriding the close() method, do not forget to delegate the method call to the super
implementation after your custom shutdown code:

@Override
public void close()
{
 // your shutdown code goes here
 super.close();
}

tpt Toolkit Productivity Tools - Developer Handbook

9

Internationalization

TPT provides a pre-built support for managing internationalization resources for your
application. Internationalization breaks up to two sections:

• International versions of application messages and other strings
• International versions of application layout (CustomLayout) files

When properly used, the above two parts are automatically managed by the TPT in
your application and you just need to provide the set of resource files for different
languages.

Creating and managing the resource files

Resource files are bound to the application theme, so you’ll need to create a new
theme for your application, if it is not created yet. If you do not need custom styling, you
may just reference the original Runo or Reindeer theme in your custom theme CSS file -
it is not important for internationalization.

Resource files for the localized messages and strings are stored in the special i18n
folder, inside the root folder of your theme. Inside the i18n folder, you must create a
subfolders for every language you want to support. Language folder name must be the
same as language code. TPT does not use full notation such as EN_us or RU_ru, so for
supporting english and russian locales, just create two subfolders “en” and “ru”.

Inside the particular language subfolder you may place any number of standard java
property files with the key=value pairs of your localized strings. Place any number of

tpt Toolkit Productivity Tools - Developer Handbook

10

property files with any names. TPT will scan those folders on application startup and load
all property files into the memory for further querying.

Note, that property files must be in UTF-8 encoding. Starting from version 1.1.1 of TPT,
you may not apply native2ascii utility to translate property files to escaped unicode
characters and just use plain UTF-8 text.

For the CustomLayout files, you just create subfolders with the language code names
inside the standard “layouts” folder of your custom theme. There are standard layout
html files must be present. For custom layout, you need to have the equal files in all
language subfolders - when you’ll use the CustomLayout (described below), TPT will
automatically look html layout file inside the appropriate language subfolder instead of
the root “layouts” folder. And only if the layout file will not be found both in the current
and default language subfolders, TPT will look for the same file in the root “layouts”
folder of your theme.

Initializing the internationalization module

Internationalization module is initialized fully automatically when your TPT application
starts, you don’t need to do anything extra. However, you may want to set the default
language code, to instruct TPT what language dictionary to query for translation if
specified key is not found in the current language dictionary.

The default language is set by calling the setDefaultLanguage() method of TPT’s
translation manager dictionary. The following code sets the “Russian” as default
language:

TM.getDictionary ().setDefaultLanguage ("ru");

Querying for translated string

In any place of your application, when you want to get a translated version of some
text, call the TPT’s translation manager get(...) method:

String appTitle = TM.get (“app.title”);
String appInfo = TM.get (“app.info”);

In the example above, the key “app.title” will be first searched in the current locale
dictionary. In case the key will not be found, it will be then searched in the default
language dictionary. In case key will not be found even there, the exact key will be
returned back as a translated string. This allows the application developer easily detect
what translation is missed.

You can also add formatting directives (%s, %d, etc, like in java formatter) into your
i18n translation files and provide appropriate extra arguments to TM.get (...) method
invocations, making dynamic strings easily:

tpt Toolkit Productivity Tools - Developer Handbook

11

app.title=Toolkit Productivity Tools Demo, version %s

window.setTitle (TM.get (“app.title”), “1.0”);

Translating custom layout templates

Custom layout template files can also be translated. As described in previous chapter,
translated versions of the layout file are placed inside the language subfolders of the
“layouts” folder of your theme.

To load the appropriate template, just use the TPT specific version of CustomLayout
class:

TranslatableCustomLayout customLayout = new TranslatableCustomLayout (“main-
window.html);

The template file “main-window.html” will be searched in your theme layouts/
<current language> folder, then in layouts/<default language> folder and finally in the
layouts folder.

tpt Toolkit Productivity Tools - Developer Handbook

12

Common Dialogs

Common dialogs package provides the possibility for quick creation and management
of a standard message and input modal dialogs - to show a informational or warning
message, confirmation dialog, data input dialog. Also the package provides the base
framework for creating of custom dialogs.

Common dialogs package is located at eu.livotov.tpt.gui.dialogs

Option Dialogs

Option dialogs displays a modal message box with the title and text, also providing
user a set of options to do: for example, to click an “OK” button for an informational
message, answer “Yes” or “No” for question and so on.

Option dialogs are powered by the class OptionDialog. Once constructed, you can use
the set of dialog methods to display different kinds of dialogs.

Simple Message Dialog

Simple message dialog shows a title, message and “OK” button to accept the message
and close the dialog. The dialog also closes by the “Enter” or “ESC” keystroke.

OptionDialog dlg = new OptionDialog (TPTApplication.getCurrentApplication ());

dlg.showMessageDialog ("Title", "Hello world !", new
OptionDialog.OptionDialogResultListener () {
 public void dialogClosed (OptionKind closeEvent)
 {
 // dialog closed here;
 }
 });

tpt Toolkit Productivity Tools - Developer Handbook

13

Confirmation Dialog

Confirmation dialog displays a title, text and “OK” and “Cancel” buttons to confirm or
to abort the confirmation. “OK” button has also an equivalent of “Enter” keystroke and
“Cancel” button - a “ESC” keystroke.

The dialog invocation code is as follows:

dlg.showMessageDialog ("Title", "Hello world ?", new
OptionDialog.OptionDialogResultListener () {
 public void dialogClosed (OptionKind closeEvent)
 {
 // dialog closed here;
 }
 });

closeEvent in dialogClosed(...) method will contain either OptionKind.OK or
OptionKind.CANCEL values.

Question Dialog

Question dialog displays title, question text and “Yes” and “No” buttons. Button “Yes”
has also a “Enter” keystroke and button “No” - a “ESC” keystroke.

The dialog invocation code is as follows:

tpt Toolkit Productivity Tools - Developer Handbook

14

dlg.showMessageDialog ("Title", "Hello world ?", new
OptionDialog.OptionDialogResultListener () {
 public void dialogClosed (OptionKind closeEvent)
 {
 // dialog closed here;
 }
 });

closeEvent in dialogClosed(...) method will contain either OptionKind.YES or
OptionKind.NO values.

Cancellable Question Dialog

Cancellable question dialog acts like a normal question dialog but in addition to “Yes”
and “No” buttons adds a “Cancel” button. In this dialog, an “Enter” keystroke is bound to
the “Yes” button but “ESC” keystroke is bound to the “Cancel” button.

The dialog invocation code is as follows:

dlg.showYesNoCancelDialog ("Title", "Hello world ?", new
OptionDialog.OptionDialogResultListener () {
 public void dialogClosed (OptionKind closeEvent)
 {
 // dialog closed here;
 }
 });

closeEvent in dialogClosed(...) method will contain one of the following values:
OptionKind.YES, OptionKind.NO or OptionKind.CANCEL

Custom Message Dialog

Custom message dialog displays the title, custom Vaadin component as a message
and a developer-defined set of buttons. The keystrokes in this dialog a bound as:

• “Enter” keystroke - “OK” or “YES” button in the listed priority
• “ESC” keystroke - “Cancel” or “NO” button in the listed priority

tpt Toolkit Productivity Tools - Developer Handbook

15

The dialog invocation code is as follows:

DateField df = new DateField ();
df.setCaption ("Select date and confirm");

dlg.showCustomDialog ("Title", df, new OptionDialog.OptionDialogResultListener
() {
 public void dialogClosed (OptionKind closeEvent)
 {
 // dialog closed here;
 }
 }, OptionKind.OK, OptionKind.CANCEL);

The closeEvent will contain an appropriate value of a pressed dialog button or a
keystroke.

Input Dialogs

Input dialogs usually provide a method to input some value and option to either
confirm or cancel it.

The dialog invocation code is as follows:

InputDialog dlg = new InputDialog (TPTApplication.getCurrentApplication ());

dlg.showInputDialog ("Title", "Your name, please:", "", new
InputDialog.InputDialogResultListener () {
 public void dialogClosed (OptionKind closeEvent, String value)
 {
 // dialog result handling code here

tpt Toolkit Productivity Tools - Developer Handbook

16

 }
 });

The dialogClosed(...) method will contain a close event code as well as current value,
which was entered into an input field at the moment of dialog close.

Download Dialog

Download dialog provides a simple dialog with a title, message text, link to some
internal or external resource to download and a “OK” button to close the dialog. This
dialog is useful for providing to an end user a possibility to download something.

The dialog can be invoked as follows:

DownloadDialog dlg =
 new DownloadDialog (TPTApplication.getCurrentApplication ());

dlg.showDownloadDialog (
 "Title",
 "Download this !",
 new ExternalResource ("http://www.sharehost.com/xxx.jpg"),
 "A gigapixel photo sample.jpg",
 new DownloadDialog.DownloadDialogResultListener ()
 {
 public void dialogClosed ()
 {
 // dialog closed.
 }
 });

tpt Toolkit Productivity Tools - Developer Handbook

17

http://www.sharehost.com/xxx.jpg
http://www.sharehost.com/xxx.jpg

Another variant of the showDownloadDialog(...) method allows to use a server File
object as a download target. It automatically wraps the File object with a Vaadin
resource:

dlg.showDownloadDialog (
	 "Title",
	 "Download this !",
	 new File (“/var/tmp/sample.tiff”),
	 "A gigapixel photo sample.jpg",
	 new DownloadDialog.DownloadDialogResultListener ()
	 {
	 	 public void dialogClosed ()
	 	 {
	 	 	 // dialog closed. You may delete the temp file here,
	 	 	 // for instance...
	 	 }
	 });

tpt Toolkit Productivity Tools - Developer Handbook

18

Common Windows

Common windows in TPT extends the standard Vaadin’s Window class and adds a
couple of interesting features. Common windows lives in a package
eu.livotov.tpt.gui.windows

TPTWindow

TPTWindow acts like a normal Vaadin’s Window but also automatically catches the
“Enter” and “ESC” keystrokes. In order to use them, just override the following methods:

• void enterKeyPressed () - called when “Enter” key is pressed.
• void escapeKeyPressed () - called when “ESC” key is pressed.

TPTWindow also provides the utility methods like showXXXMessage (...) - they
delegate calls to a Vaadin’s showNotification (...) method but with the difference that
“\n” control characters in the title and message text are (optionally) replaced to html
“
” line breaks to make line terminated strings to look correctly on the screen.

TPTHtmlWindow

TPTHtmlWindow extends TPTWindow with all of its features but also adds the
possibility to use a html resources as a background for the window. Basically, this is done
simply by automatically using a custom layout which is set as a main content for the
window.

All rules, which applies to standard CustomLayout are correct for the TPTHtmlWindow.
Layout file name (without an extension) or input stream can be provided to a
TPTHtmlWindow constructor.

TPTHtmlWindow is i18n-aware, so it will search the correct layout file according to the
current application language.

TPTHtmlWindow also allows to add any Vaadin widgets to itself by proxying
addComponent(...) calls to a internal custom layout with which the window was
initialized. Thus, TPTHtmlWindow is the same as if one would create a Window, create a
CustomLayout and set it as a content to this Window and then add components to it.

tpt Toolkit Productivity Tools - Developer Handbook

19

Widgets

TPT contains the number of stand-alone widgets, which may be used anywhere in
application. Those widgets are 100% server-side, e.g. uses the default client widgetset
and does not require any GWT recompilation.

TPTMultiView

TPTMultiView is an iPhone OS like
view controller, which manage the set
of user interfaces, called “views”,
displays one of them (current) at a
time and manages the current view
switching. Using this widget one can
c r e a t e a c o m p l e x s w i t c h a b l e
interfaces.

Views can be switched either
programmatically from within the
application or from external events - an
application address URL. This provides the
transparent integration with the browser,
enabling the bookmarking features and direct
access of application components via the direct
links.

Views can not only be switched, but also receive or send
parameters to another views. Parameters may also be sent
programmatically or embed into the direct URLs. Each view is a standard Vaadin’s
Component object, for instance, VerticalLayout, Panel or other layout or widget. View
does not need to implement any special interface, however it can do this in order to
receive notifications on its life cycle events.

Typical views pattern usage is to have a single window or panel in your application (or
application part). The content of this part is managed by a view controller, which displays
one or another view upon user interactions or external events (such as URL invocation).

Creating a view controller

Creating a view controller is simple as follows:

boolean isManageUrls = true;
TPTMultiView controller = new TPTMultiView (isManageUrls);

myWindow.addComponent (controller);

View A

View B

View C

View D - Active

tpt Toolkit Productivity Tools - Developer Handbook

20

Field isManageUrls determines is view controller should install an URIFragmentUtility
to manage the state of an application URL as well as intercept and trigger views from
direct links to the application.

Technically, the TPTMultiView is a VerticalLayout with all its features. Once view
controller is created, it can be added as any other Vaadin widget to the Window or other
layout. For instance, you can set TPTMultiView as a window contents via setContents(...)
method or add it as a regular widget to existing UI components hierarchy.

By default, TPTMultiView sets its width and height to 100%. If you need other layout
size factors, you’ll have to adjust them manually. Remember, that TPTMultiView is just a
VerticalLayout, so deal with it absolutely the same way as you deal with other vertical
layouts in your application.

Adding views into the controller

View is a standard Vaadin’s Component object. So simply add them to a view controller
instance, accomplishing the name of the view. Name must be unique for all views and it
will be used as a reference to a view:

controller.addView (“main”, new MainDataPanel());
controller.addView (“settings”, new SettingsPanel());

You can also use view component class instead of the instance - this will delay the
view instantiation until first invocation of this view:

controller.addView (“settings”, SttingsPane.class);

When you add a view to a controller, it will not become visible and therefore does not
change the current view. The exception is a first view - when you add a view to an empty
controller, this view will automatically become visible.

You may also remove or replace views in any time by calling the appropriate methods:

controller.removeView (“settings”);
controller.replaceView (“main” , new MainDataPanel());

tpt Toolkit Productivity Tools - Developer Handbook

21

Switching between views

You may switch the current view programmatically by calling the switchView(...)
method of a view controller. The method argument is a view name:

controller.switchView (“settings”);

If your view controller was created with enabled option for URL management, you can
switch the view by accessing your application with the view name in the application URL:

localhost:8080/myapp#settings

The application URL string in a browser will also reflect the current view when it is
switched programmatically.

If invalid view name is passed via switchView(...) method or via an URL, view controller
throws an IllegalArgumentException. To suppress this, you may define a failsafe view
name, which will be displayed in such cases:

controller.setFailsafeViewName (“main”);

Passing parameters to a views

When switching to a particular view, you can pass a parameter to it. For instance, if you
have a view named “display”, which displays the documents from a database, you may be
interested to have a direct links to your application, to open a particular document. So,
you will need to pass a document ID to a view.

Parameters are added to the view name, separated by the “/” character from it. If such
slash delimited view name is passed to a switchView (...) method or called in browser, text
before slash is threaten as view name, and text after slash - as view parameter. This
parameter can be the read by a view if it will implement an interface for listening of life
cycle events (see below).

In out example about “display” view, the URL might look like as follows:

localhost:8080/myapp#display/1223

or you may write in your code:

controller.switchView (“document/1223”);

tpt Toolkit Productivity Tools - Developer Handbook

22

Listening to view lifecycle events

A view controller emits the life cycle events when view is added, removed, opened and
closed. In order to catch those events, a view must implement a TPTView interface. Once
implemented, it’s methods will be automatically called by a controller, so no registration
necessary.

public class SettingsView extends VerticalLayout implements TPTMultiView.TPTView
{
 public void viewActivated (String previousViewName, String parameters)
 {
 }

 public void viewDeactivated (String newViewName)
 {
 }

 public void viewAttached ()
 {
 }

 public void viewRemoved ()
 {
 }
}

• viewActivated method is called when this view is displayed (e.g. controller has
switched to this view). Controller also sends a name of a previous view and view
parameters (if any).

• viewDeactivated is called when this view is hidden, e.g. controlled has switched to
another view. A new active view name is passed as a parameter.

• viewAttached is called when a view component is added to the controller.
• viewRemoved is called when a view component is removed from the controller.

Why it is important to use view-controller functionality in applications - this allows
you to split your application UI pieces into several independent and small pieces which is
easier to maintain and modify. Your application code becomes cleaner and more
transparent. From the browser’s point of view - at the single moment of time, your
application UI contains less (in some cases much less) number of UI components (divs)
which increases rendering time. Remember, that even no visible widget (setVisible
(false);) is still present in web browser’s DOM tree and eating space and CPU resources
when any changes occur in UI and redraw or state change is required. With the
TPTMultiView only the widgets of currently visible view is loaded into DOM. Invisible
views are removed, not hidden from the DOM.

tpt Toolkit Productivity Tools - Developer Handbook

23

TPTLazyLoadingLayout - a layout to help organizing long initializing UIs

TPTLazyLoadingLayout is used to display UI component or components collection
which initialization phase takes a long time. During the initialization process, a layout will
automatically display a temporary UI with a progress bar and optional message text and
when initialization process ends - an actual UI is shown.

Imagine, that your custom server-side UsernameLabel component extends Vaadin’s
Label widget and just performs a database lookup to fetch and set the current user full
name. Your database lookup is done in the label’s constructor and take from 3 to 5
seconds. If you just use this label as is, your client-side UI will stuck for that time,
displaying a red wheel-of-death. By wrapping your label to TPTLazyLoadingLayout, your
UI will not stuck and just display a nice progress bar in place where full user name should
be displayed. Once your database query is done, progress indicator will be automaticaslly
replaced with your wrapped label :)

As TPTLazyLoadingLayout runs the initialization task in a separate server thread, the
main UI and web browser window is not locked, stays responsive and even allows to
navigate between other application parts while UI initialization process is in progress.

To use a lazy loading layout, simply write your actual server-side UI component as
usual , implement a LazyLoader interface in it and move all lengthy initialization stuff
into the LazyLoader.lazyLoad(...) method, also returning a “this” as a result value of a
method. Then create an instance of TPTLazyLoadingLayout, passing your actual
component class into the constructor and add the layout to the UI hierarchy instead of
an actual component.

If you have an existing UI component, which initialization takes some long time, you
may also improve the user experience by wrapping it with the TPTLazyLoadingLayout. The
steps are as follows:

- Assume, your existing UI is named MyDatabasePanel

- Tweak MyDatabasePanel.class making it implementing LazyLoader interface - you’ll
have to implement two methods: lazyLoad() and getLazyLoadingMessage()

- Move all your long code (or entire UI creation code) to the lazyLoad() method. End
this method by calling return this;

- In getLazyLoadingMessage() method return any message text, which will be shown
while your actual UI is loading

- In your code, where you insert your MyDatabasePanel to a layout, replace addComponent
(new MyDatabasePanel()); with a addComponent (new TPTLazyLoadingLayout(new
MyDatabasePanel(), true));

TPTLazyLoadingLayout will take care displaying a progress indicator and calling your
implemented lazyLoad method in a separate thread and once it is finished - put the
method result as an actual UI component instead of progress indicator.

Please also check the tpt-demo sources to see the live example on how the
TPTLazyLoader works.

tpt Toolkit Productivity Tools - Developer Handbook

24

TPTMessagePanel

How often you need to quickly display a single line of text at the center of screen or
sub-view ?

Here are the typical steps in plain Vaadin:

Label msg = new Label (“You do not have enough permissions to access this”);
msg.setWidth(null);

VerticalLayout l = new VerticalLayout();
l.setSizeFull();

TPTSizer s1 = new TPTSizer(null, "100%");
TPTSizer s2 = new TPTSizer(null, "100%");

l.addComponent(s1);
l.addComponent(msg);
l.addComponent(s2);

l.setExpandRatio(s1,0.5f);
l.setExpandRatio(s2,0.5f);

l.setComponentAlignment(msg, Alignment.MIDDLE_CENTER);

myRoot.addComponent(l);

And with new TPTMessagePanel component, the code above collapses to the single
line of code :

myRoot.addComponent(new TPTMessagePanel (“You do not have enough permissions to
access this”));

And if text message is not enough for you, feel free to use second constructor, which
allows to pass a regular Vaadin Component instance instead of a text string.
TPTMessagePanel will take care of parent layout centering issues.

As usual, TPT keeps making small but time-saving components for real world
applications, just to save developers time and extend the keyboard life :)

tpt Toolkit Productivity Tools - Developer Handbook

25

Limitations and known issues

Common cluster environment limitations

Initially, TPT was not designed especially for the clustering environment. However,
most of the core functions are taking care on this and should work in a cluster without
any problems: i18n, TPTApplication, UI dialogs and windows, most widgets.

However, TPTLazyLoadingLayout, as it spawns a separate server thread, may not
functioning properly, so take a note on this if you’re planning to run your TPT-enabled
application in a cluster.

If you’re actively working with a clustered apps and have ideas, suggestions on TPT
improvement on this side or just want to participate in a project - you’re always welcome,
just drop a note to tpt@livotov.eu

Google AppEngine issues

- TPTCaptcha will not work in GAE as it does not support AWT classes, which are used to
generate captcha images.

- Message dialogs callbacks are not working for some unknown reason, causing
application reset when any button in a dialog is clicked. This will be investigated and
fixed in a next versions

- TPTLazyLoadingLayout will not work as GAE does not permit to spawn new threads
from an applications.

JEE6 issues

If you use JEE6 with CDI, TPTApplication.getInstance() may not work correctly. This is
known problem with CDI and currently being understood and resolved.

tpt Toolkit Productivity Tools - Developer Handbook

26

