MenuDocs
Documentation versions (currently viewingVaadin 8)V8
	Vaadin 24

	Vaadin 23

	Vaadin 22

	Vaadin 14

	Vaadin 10

	Vaadin 8

	Vaadin 7

	Framework
	Designer
	Charts
	TestBench
	Spreadsheet
	Board
	Bakery App Starter
	AppSec Kit

Search
Change to dark themeVaadin 8 reached End of Life on February 21, 2022. Discover how to make your Vaadin 8 app futureproof →
Dismiss banner

Docs
	Framework
	Designer
	Charts
	TestBench
	Spreadsheet
	Board
	Bakery App Starter
	AppSec Kit

Expand top-level sections	Vaadin 8 Tutorial

	Show sub-pages of IntroductionIntroduction
	Overview

	Example Application Walkthrough

	Support for IDEs

	Goals and Philosophy

	Background

	Show sub-pages of Installing Development ToolsInstalling Development Tools
	Overview

	A Reference Toolchain

	Installing Java

	Installing a Web Server

	Installing Eclipse IDE

	Installing NetBeans IDE

	Installing IntelliJ IDEA

	Show sub-pages of Creating a Vaadin ProjectCreating a Vaadin Project
	Overview

	Vaadin Libraries

	Maven Archetypes

	Creating a Project in Eclipse

	Creating a Project in NetBeans

	Creating a Project in IntelliJ

	Creating a Project with Maven

	Vaadin Installation Package

	Using Vaadin with Scala

	Using Vaadin with Kotlin

	Show sub-pages of Vaadin ArchitectureVaadin Architecture
	Overview

	Technological Background

	Client-Side Engine

	Events and Listeners

	Show sub-pages of Server-Side ApplicationsServer-Side Applications
	Overview

	Building the UI

	Designing UIs Declaratively

	Handling Events with Listeners

	Images and Other Resources

	Handling Errors

	Notifications

	Application Lifecycle

	Deploying an Application

	Show sub-pages of Server-Side ComponentsServer-Side Components
	Overview

	Interfaces and Abstractions

	Common Component Features

	Field Components

	Selection Components

	Component Extensions

	Label

	Link

	TextField

	TextArea

	PasswordField

	RichTextArea

	Date Input with DateField

	Button

	CheckBox

	ComboBox

	ListSelect

	NativeSelect

	CheckBoxGroup and RadioButtonGroup

	TwinColSelect

	Grid

	TreeGrid

	Tree

	MenuBar

	Upload

	ProgressBar

	Slider

	PopupView

	Composition with Composite and CustomComponent

	Composite Fields with CustomField

	Embedded Resources

	Show sub-pages of Layout ComponentsLayout Components
	Overview

	UI, Window, and Panel Content

	VerticalLayout and HorizontalLayout

	GridLayout

	FormLayout

	Panel

	Sub-Windows

	HorizontalSplitPanel and VerticalSplitPanel

	TabSheet

	Accordion

	AbsoluteLayout

	CssLayout

	Layout Formatting

	Custom Layouts

	Show sub-pages of ThemesThemes
	Overview

	Introduction to Cascading Style Sheets

	Syntactically Awesome Stylesheets (Sass)

	Compiling Sass Themes

	Creating and Using Themes

	Creating a Theme in Eclipse

	Valo Theme

	Font Icons

	Custom Fonts

	Responsive Themes

	Show sub-pages of Vaadin Data ModelVaadin Data Model
	Overview

	Editing Values in Fields

	Binding Data to Forms

	Showing Many Items in a Listing

	Selecting items

	Hierarchical Data

	Hide sub-pages of Advanced TopicsAdvanced Topics
	Handling Browser Windows

	Embedding UIs in Web Pages

	Debug Mode and Window

	Request Handlers

	Shortcut Keys

	Printing

	Common Security Issues

	Navigating in an Application

	Advanced Application Architectures

	Manipulating browser history

	Managing URI Fragments

	Drag and Drop

	Logging

	JavaScript Interaction

	Accessing Session-Global Data

	Server Push

	Vaadin CDI Add-on

	Vaadin Spring Add-on

	Vaadin OSGi Support

	Show sub-pages of PortletsPortlets
	Overview

	Portlet UI

	OSGi Portlets on Liferay 7

	Developing Vaadin Portlets for Liferay

	Deploying to a Portal

	Vaadin IPC for Liferay

	Show sub-pages of Client-Side DevelopmentClient-Side Development
	Overview

	Installing the Client-Side Development Environment

	Client-Side Module Descriptor

	Compiling a Client-Side Module

	Creating a Custom Widget

	Debugging Client-Side Code

	Show sub-pages of Client-Side ApplicationsClient-Side Applications
	Overview

	Client-Side Module Entry-Point

	Compiling and Running a Client-Side Application

	Loading a Client-Side Application

	Show sub-pages of Client-Side WidgetsClient-Side Widgets
	Overview

	GWT Widgets

	Vaadin Widgets

	Grid

	Show sub-pages of Client-Server IntegrationClient-Server Integration
	Overview

	Starting It Simple With Eclipse

	Creating a Server-Side Component

	Integrating the Two Sides with a Connector

	Shared State

	RPC Calls Between Client- and Server-Side

	Component and UI Extensions

	Styling a Widget

	Component Containers

	Advanced Client-Side Topics

	Creating Add-ons

	Migrating from Vaadin 6

	Integrating JavaScript Components and Extensions

	Show sub-pages of Vaadin Add-onsVaadin Add-ons
	Overview

	Using Add-ons in a Maven Project

	Installing Add-ons in Eclipse with Ivy

	Downloading Add-ons from Vaadin Directory

	Installing Commercial Vaadin Add-on Licenses

	Troubleshooting

	Show sub-pages of MigrationMigration
	Migrating to Framework 8

	Show sub-pages of Community ArticlesCommunity Articles
	Contents

	Access Control For Views

	Creating A Servlet 3.0 Application

	Developing Portlets For The WebSphere Portal Server

	Configure Combo Boxes Wisely

	Letting The User Download A File

	Using Vaadin In IBM Domino

	Vaadin Tutorial For Swing Developers

	Setting And Reading Session Attributes

	Enabling Server Push

	Cleaning Up Resources In A UI

	Sending Email From Java Applications

	Optimizing Sluggish UI

	Using Parameters With Views

	Configuring Push For Your Environment

	Setting And Reading Cookies

	Using Polling

	Finding The Current UI And Page And Vaadin Session

	Creating An Application That Preserves State On Refresh

	Sending Events From The Client To The Server Using RPC

	Handling Logout

	Scalable Web Applications

	Remember To The Set The Locale

	MVC Basics In IT Mill Toolkit

	Customizing The Startup Page In An Application

	Using URI Fragments

	Accessing Web Page And Browser Information

	Generating Dynamic Resources Based On URI Or Parameters

	Optimizing The Widget Set

	Using Server Initiated Events

	Choose Input Field Components Wisely

	Creating A Simple Component

	Integrating An Existing GWT Widget

	Integration Experiences

	Vaadin On Grails with IntelliJ IDEA

	Vaadin On Grails Database Access

	Vaadin On Grails Multiple UIs

	Integrating A JavaScript Component

	Integrating A JavaScript Library As An Extension

	Using A JavaScript Library Or A Style Sheet In An Add On

	Exposing Server Side API To JavaScript

	Using RPC From JavaScript

	Getting Started With Vaadin Spring Without Spring Boot

	Vaadin 7 Spring Security

	Using Bean Validation To Validate Input

	Vaadin Spring Tips

	Vaadin CDI

	Injection And Scopes

	Creating Secure Vaadin Applications Using JEE6

	Using Vaadin CDI With JAAS Authentication

	Load Testing With Gatling

	Vaadin Scalability Testing With Amazon Web Services

	Using Font Icons

	Dynamically Injecting CSS

	Valo Examples

	Read Only Vs Disabled Fields

	Valo Theme Getting Started

	Use Tooltips To Clarify Functions

	Enable And Disable Buttons To Indicate State

	Changing Theme On The Fly

	Mark Required Fields As Such

	Packaging SCSS Or CSS in An Addon

	Right Align Comparable Numerical Fields

	Customizing Component Theme With SASS

	Widget Styling Using Only CSS

	Visually Distinguish Primary Actions

	Label Buttons Expressively

	Creating An Eclipse Project

	Creating A Simple Component Container

	Using RPC To Send Events To The Client

	Creating A Component Extension

	Creating A UI Extension

	Using Declarative Services

	Dynamically Updating State Before Sending Changes To Client

	Getting Started On NetBeans

	Component Addon Project Setup HOWTO

	Creating A Theme Using SASS

	Opening A UI In A Popup Window

	View Change Confirmations

	Creating A Bookmarkable Application With Back Button Support

	Broadcasting Messages To Other Users

	Configure Input Fields To Guide Data Entry

	Creating Multi Tab Applications

	Adding A Splash Screen

	Connecting large amounts of data to UI

	Deploying Vaadin 8.8.2 on WebSphere Application Server 8.5.5.15 traditional

	Introduction

	JavaDoc

	Sampler

	Demo

	Docs
	Framework
	Advanced Topics
	Printing

Printing

	Printing the Browser Window
	Opening a Print Window
	Printing PDF

Vaadin does not have any special support for printing. There are two basic ways
to print - in a printer controlled by the application server or by the user from
the web browser. Printing in the application server is largely independent of
the UI, you just have to take care that printing commands do not block server
requests, possibly by running the print commands in another thread.

For client-side printing, most browsers support printing the web page. You can
either print the current or a special print page that you open. The page can be
styled for printing with special CSS rules, and you can hide unwanted elements.
You can also print other than Vaadin UI content, such as HTML or PDF.

Printing the Browser Window

Vaadin does not have special support for launching the printing in browser, but
you can easily use the JavaScript print() method that opens the
print window of the browser.

Java

Button print = new Button("Print This Page");
print.addClickListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Print the current page
 JavaScript.getCurrent().execute("print();");
 }
});

The button in the above example would print the current page, including the
button itself. You can hide such elements in CSS, as well as otherwise style the
page for printing. Style definitions for printing are defined inside a
@media print {} block in CSS.

Opening a Print Window

You can open a browser window with a special UI for print content and
automatically launch printing the content.

Java

public static class PrintUI extends UI {
 @Override
 protected void init(VaadinRequest request) {
 // Have some content to print
 setContent(new Label(
 "<h1>Here's some dynamic content</h1>\n" +
 "<p>This is to be printed.</p>",
 ContentMode.HTML));

 // Print automatically when the window opens
 JavaScript.getCurrent().execute(
 "setTimeout(function() {" +
 " print(); self.close();}, 0);");
 }
}
...

// Create an opener extension
BrowserWindowOpener opener =
 new BrowserWindowOpener(PrintUI.class);
opener.setFeatures("height=200,width=400,resizable");

// A button to open the printer-friendly page.
Button print = new Button("Click to Print");
opener.extend(print);

How the browser opens the window, as an actual (popup) window or just a tab,
depends on the browser. After printing, we automatically close the window with
JavaScript close() call.

Printing PDF

To print content as PDF, you need to provide the downloadable content as a
static or a dynamic resource, such as a StreamResource.

You can let the user open the resource using a Link component, or
some other component with a BrowserWindowOpener extension. When such
a link or opener is clicked, the browser opens the PDF in the browser, in an
external viewer (such as Adobe Reader), or lets the user save the document.

It is crucial to notice that clicking a Link or a
BrowserWindowOpener is a client-side operation. If you get the
content of the dynamic PDF from the same UI state, you can not have the link or
opener enabled, as then clicking it would not get the current UI content.
Instead, you have to create the resource object before the link or opener are
clicked. This usually requires a two-step operation, or having the print
operation available in another view.

Java

// A user interface for a (trivial) data model from which
// the PDF is generated.
final TextField name = new TextField("Name");
name.setValue("Slartibartfast");

// This has to be clicked first to create the stream resource
final Button ok = new Button("OK");

// This actually opens the stream resource
final Button print = new Button("Open PDF");
print.setEnabled(false);

ok.addClickListener(new ClickListener() {
 @Override
 public void buttonClick(ClickEvent event) {
 // Create the PDF source and pass the data model to it
 StreamSource source =
 new MyPdfSource((String) name.getValue());

 // Create the stream resource and give it a file name
 String filename = "pdf_printing_example.pdf";
 StreamResource resource =
 new StreamResource(source, filename);

 // These settings are not usually necessary. MIME type
 // is detected automatically from the file name, but
 // setting it explicitly may be necessary if the file
 // suffix is not ".pdf".
 resource.setMIMEType("application/pdf");
 resource.getStream().setParameter(
 "Content-Disposition",
 "attachment; filename="+filename);

 // Extend the print button with an opener
 // for the PDF resource
 BrowserWindowOpener opener =
 new BrowserWindowOpener(resource);
 opener.extend(print);

 name.setEnabled(false);
 ok.setEnabled(false);
 print.setEnabled(true);
 }
});

layout.addComponent(name);
layout.addComponent(ok);
layout.addComponent(print);

Advanced TopicsShortcut KeysAdvanced TopicsCommon Security IssuesUpdated 2021-02-03Edit this page on GitHub

