Chapter 20

Vaadin TestBench

20.1. OVEIVIBW ..ottt ettt et e et e e e rabe e e e s anreeeeeaes 453
20.2. Installing Vaadin TestBench ... 456
20.3. Preparing an Application for Testingcccuvveeeeiiiiiiiiiee e 461
20.4. Using Vaadin TestBench Recordercccccveiiiiiiiiiieeiiiieeeeen 462
20.5. Developing JUNIt TESEScueeiiiiiiieiieieeee e 468
20.6. Taking and Comparing Screenshotsccccooiuieiiiiiiiie e 479
20.7. Running Tests in an Distributed Environmentcccccceiiiiininnn. 483
20.8. KNOWN ISSUESeeiiiiiiieiiiiiiiie ettt e e e 485

This chapter describes the installation and use of the Vaadin TestBench.
20.1. Overview

Quality assurance is one of the cornerstones of modern software development. Extending
throughout the entire development process, quality assurance is the thread that binds the end
product to the requirements. In iterative development processes, with ever shorter release cycles
and continuous integration, the role of regression testing is central. The special nature of web
applications creates many unique requirements for regression testing.

In a typical situation, you are developing a web application with Vaadin and want to ensure that
only intended changes occur in its behaviour after modifying the code, without testing the applic-
ation manually every time. There are two basic ways of detecting such regressions. Screenshots
are the strictest way, but often just checking the displayed values in the HTML is better if you
want to allow some flexibility for themeing, for example. You may also want to generate many
different kinds of inputs to the application and check that they produce the desired outputs.

Book of Vaadin 453

Vaadin TestBench

Figure 20.1. Controlling the Browser with WebDriver
@Test

. public void testCasel() throws Exception {
Browser Window driver.get("http://localhost/myapp");
http://localhost/myapp

N WebElement button = driver.findElement(...);
Push Me! 7 . button.click();

Thanl{s!"‘/)

WebElement label = driver.findElement(...);
assertEquals("Thanks! WetText()) ;

}

Vaadin TestBench utilizes the Selenium WebDriver to control the browser from Java code, as il-
lustrated in Figure 20.1, “Controlling the Browser with WebDriver”. It can open a new browser
window to start the application, interact with the components for example by clicking them, and
then get the HTML element values.

You can develop such WebDriver unit tests along your application code, for example with JUnit,
which is a widely used Java unit testing framework. You can also use a recorder that runs in the
browser to create JUnit test case stubs, which you can then refine further with Java. You can run
the tests as many times as you want in your workstation or in a distributed grid setup.

Figure 20.2. TestBench Workflow

QLI Develop Analyze

Test JUnit Results
Stubs Tests

The main features of Vaadin TestBench are:
+ Record JUnit test case stubs in browser
+ Develop tests in Java with the WebDriver
+ Validate Ul state by assertions and screen capture comparison
+ Screen capture comparison with difference highlighting
+ Distributed test grid for running tests
+ Integration with unit testing
+ Test with browsers on mobile devices

Execution of tests can be distributed over a grid of test nodes, which speeds up testing. The grid
nodes can run different operating systems and have different browsers installed. In a minimal
setup, such as for developing the tests, you can use Vaadin TestBench on just a single computer.

454

Overview

Vaadin TestBench

Based on Selenium

Vaadin TestBench is based on the Selenium web browser automation library. With the Selenium
WebDriver API, you can control browsers straight from Java code. The TestBench Recorder is
based on the Selenium IDE.

Selenium is augmented with Vaadin-specific extensions, such as:
+ Proper handling of Ajax-based communications of Vaadin
+ Exporting test case stubs from the Recorder
+ Performance testing of Vaadin applications
+ Screen capture comparison
+ Finding HTML elements using a Vaadin selector
TestBench Components
The main components of Vaadin TestBench are:
+ Vaadin TestBench Java Library
+ Vaadin TestBench Recorder

The library includes WebDriver, which provides API to control a browser like a user would. This
API can be used to build tests, for example, with JUnit. It also includes the grid hub and node
servers, which you can use to run tests in a grid configuration.

The Vaadin TestBench Recorder is helpful for creating test case stubs. It is a Firefox extension
that you install in your browser. It has a control panel to record test cases and play them back.
You can play the test cases right in the recorder. You can then export the tests as JUnit tests,
which you can edit further and then execute with the WebDriver.

Vaadin TestBench Library provides the central control logic for:
+ Executing tests with the WebDriver
+ Additional support for testing Vaadin-based applications
+ Comparing screen captures with reference images
+ Distributed testing with grid node and hub services
Requirements
Requirements for recording test cases with Vaadin TestBench Recorder:
+ Mozilla Firefox
Requirements for running tests:
+ Java JDK 1.6 or newer

+ Browsers installed on test nodes as supported by Selenium WebDriver

Based on Selenium 455

Vaadin TestBench

+ Google Chrome

+ Internet Explorer

+ Mozilla Firefox

+ Opera

» Mobile browsers: Android, iPhone

+ Build system such as Ant or Maven to automate execution of tests during build process
(recommended)

Continuous Integration Compatibility

Continuous integration means automatic compilation and testing of applications frequently, typically
at least daily, but ideally every time when code changes are committed to the source repository.
This practice allows catching integration problems early and finding the changes that first caused
them to occur.

You can make unit tests with Vaadin TestBench just like you would do any other Java unit tests,
so they work seamlessly with continuous integration systems. Vaadin TestBench is tested to
work with at least TeamCity and Hudson/Jenkins build management and continuous integration
servers, which all have special support for the JUnit unit testing framework.

Licensing and Trial Period

You can download Vaadin TestBench from Vaadin Directory and try it out for a free 30-day trial
period, after which you are required to acquire the needed licenses. You can purchase licenses
from the Directory. A license for Vaadin TestBench is also included in the Vaadin Pro Account
subscription.

20.2. Installing Vaadin TestBench

Installation of Vaadin TestBench covers the following tasks:
+ Download and unpack the Vaadin TestBench installation package
+ Install Vaadin TestBench Recorder
+ Install Vaadin TestBench Library

Which modules you need to install depends on whether you are developing tests or running ex-
isting tests. Two basic installation types are covered in these instructions:

+ Test development installation on a workstation

+ Distributed grid installation
20.2.1. Test Development Installation
In a typical test development setup, you install Vaadin TestBench on a workstation. You can use

the TestBench Recorder to record test cases and export them as JUnit test case stubs. This is
especially recommended if you are new to Vaadin TestBench and do not want to code from

456 Continuous Integration Compatibility

Vaadin TestBench

scratch. You can install the Recorder in Firefox as described in Section 20.2.6, “Installing the
Recorder”.

You may find it convenient to develop and execute tests under an IDE such as Eclipse. The
special support for running JUnit test cases in Eclipse is described in Section 20.5.3, “Running
JUnit Tests in Eclipse”.

In such a test development setup, you do not need a grid hub or nodes. However, if you develop
tests for a grid, you can run the tests, the grid hub, and one node all in your development work-
station. A distributed setup is described in the following section.

20.2.2. A Distributed Testing Environment

Vaadin TestBench supports distributed execution of tests in a grid. A test grid consists of the
following categories of hosts:

+ One or more test servers executing the tests
+ A grid hub
« Grid nodes

The components of a grid setup are illustrated in Figure 20.3, “Vaadin TestBench Grid Setup”.

Figure 20.3. Vaadin TestBench Grid Setup

Test Server Grid Hub Server Grid Node |
Test Suite ey
Firefox, IE, Safari,
Application Server Chrome, ...
Reference
Images

The grid hub is a service that handles communication between the JUnit test runner and the
nodes. The nodes are services that perform the actual execution of test commands in the browser.

The hub requires very little resources, so you would typically run it either in the test server or on
one of the nodes. You can run the tests, the hub, and one node all in one host, but in a fully dis-
tributed setup, you install the Vaadin TestBench components on separate hosts.

Controlling browsers over a distributed setup requires using a remote WebDriver. Grid development
and use of the hub and nodes is described in Section 20.7, “Running Tests in an Distributed
Environment”.

A Distributed Testing Environment 457

Vaadin TestBench

20.2.3. Downloading and Unpacking the Installation Package

First, download the installation package vaadin-testbench-3.0.0.zip and extract the in-
stallation package where you can find it.

Windows

In Windows, use the default ZIP decompression feature to extract the package into your chosen
directory, for example, C: \dev.

Windows Zip Decompression Problem
A The default decompression program in Windows XP and Vista as well as some ver-

sions of WinRAR cannot unpack the installation package properly in certain cases.
Decompression can result in an error such as: "The system cannot find the file spe-
cified." This can happen because the default decompression program is unable to
handle long file paths where the total length exceeds 256 characters. This can occur,
for example, if you try to unpack the package under Desktop. You should unpack
the package directly into C: \dev or some other short path or use another decom-
pression program.

Linux, MacOS X, and other UNIX

In Linux, Mac OS X, and other UNIX-like systems, you can use Info-ZIP or other ZIP software
with the command:

$ unzip vaadin-testbench-3.0.0.zip
The contents of the installation package will be extracted under the current directory.

In Mac OS X, you can also double-click the package to extract it under the current folder in a
folder with the same name as the package.

20.2.4. Installation Package Contents
The installation package contains the following:

documentation
The documentation folder contains the TestBench library APl documentation, a PDF
excerpt of this chapter of Book of Vaadin, and the license.

example
The example folder provides TestBench examples. An example Maven configuration
POM is given, as well as the JUnit test Java source files. For a description of the
contents, see Section 20.2.5, “Example Contents”.

maven
The Maven folder contains version of the Vaadin TestBench libraries that you can install
in your local Maven repository. Please follow the instructions in Section 20.5.5, “Ex-
ecuting Tests with Maven”.

vaadin-testbench-recorder
This folder constains the Vaadin TestBench Recorder, which you can install in Firefox.
Please follow the instructions in Section 20.2.6, “Installing the Recorder”.

458 Downloading and Unpacking the Installation Package

Vaadin TestBench

vaadin-testbench-standalone-3.0.0.jar
This is the Vaadin TestBench library. It is a standalone library that includes the Selen-
ium WebDriver and many other required libraries.

vaadin-testbench-standalone-3.0.0-javadoc. jar
This is the JavaDoc APl documentation for the TestBench library. If you use Eclipse,
you can associate the JAR with the TestBench JAR in the project preferences, in the
build path library settings.

20.2.5. Example Contents

The example/maven folder provides a number of examples for using Vaadin TestBench. The
source code for the application to be tested, a desktop calculator application, is given in the
src/main/java subfolder.

The tests examples given under the src/test/java subfolder, in the
com/vaadin/testbenchexample package subfolder, are as follows:

SimpleCalculatorITCase.java
Demonstrates the basic use of WebDriver. Interacts with the buttons in the user inter-
face by clicking them and checks the resulting value. Uses By.id () to access the
elements.

LoopingCalculatorITCase. java
Otherwise as the simple example, but shows how to use looping to produce program-
matic repetition to create a complex use case.

ScreenshotITCase.java
Shows how to compare screenshots, as described in Section 20.6, “Taking and
Comparing Screenshots”. Some of the test cases include random input, so they require
masked screenshot comparison to mask the random areas out.

The included reference images were taken with Firefox on Mac OS X, so if you use
another platform, they will fail. You will need to copy the error images to the reference
screenshot folder and mask out the areas with the alpha channel as described in
Section 20.6.3, “Taking Screenshots for Comparison”.

SelectorExamplesITCase.java
This example shows how to use different selectors:

* By.id() - selecting by identifier
* By.xpath() - selecting by an XPath expression

VerifyExecutionTimeITCase.java
Shows how to time the execution of a test case and how to report it.

AdvancedCommandsITCase.java
Demonstrates how to test tooltips (Section 20.5.10, “Testing Tooltips”) and context
menus. Uses debug IDs, XPath expressions, as well as CSS selectors to find the
elements to check.

For information about running the examples with Maven, see Section 20.5.5, “Executing Tests
with Maven”.

Example Contents 459

Vaadin TestBench

20.2.6. Installing the Recorder

You can use the Vaadin TestBench Recorder in a test development environment to record test
cases and to export them as JUnit test case stubs, which you can then develop further. This
gives you a quick start when you are learning to use TestBench. Later you can use the Recorder
to identify the HTML DOM paths of the user interface elements which you want to test.

After extracting the files from the installation package, do the following:

1. Change to the vaadin-testbench-recorder directory under the installation directory.

2. Open Mozilla Firefox

3. Either drag and drop the vaadin-testbench-recorder-3.0.0.xpi to an open
Firefox window or open it from the menu with File Open File.

4. Firefox will ask if you want to install the TestBench Recorder extension. Click Install.

Figure 20.4. Installing Vaadin TestBench Recorder

) @ software Installation

Install add-ons only from authors whom you trust.

Malicious software can damage your compukter or violate your
privacy.

You have asked to install the Following item:

% Vaadin TestBench Recorder (dActhor not verified)
File://fhome/magifitmill/texts/testbenchfvaadin-testbench-recon

ﬁ TestBench Recorder: Java Formatters (Acthor not verfied)
file:///home/magifitmill/texts/testbenchfvaadin-testbench-recon

Install (3) @ Cancel

5. After the installation of the add-on is finished, Firefox offers to restart. Click Restart
Now.

Installation of a new version of Vaadin TestBench Recorder will overwrite an existing previous
version.

After Firefox has restarted, navigate to a Vaadin application for which you want to record test
cases, such as http://demo.vaadin.com/sampler.

460 Installing the Recorder

Vaadin TestBench

20.2.7. Test Node Configuration

If you are running the tests in a grid environment, you need to make some configuration to the
test nodes to get more stable results.

Operating system settings

Make any operating system settings that might interfere with the browser and how it is opened
or closed. Typical problems include crash handler dialogs.

On Windows, disable error reporting in case a browser crashes as follows:
1. Open control panel System
2. Select Advanced tab
3. Select Error reporting
4. Check that Disable error reporting is selected

5. Check that But notify me when critical errors occur is not selected
Settings for Screenshots

The screenshot comparison feature requires that the user interface of the browser stays constant.
The exact features that interfere with testing depend on the browser and the operating system.

In general:
+ Disable blinking cursor
+ Use identical operating system themeing on every host
+ Turn off any software that may suddenly pop up a new window
+ Turn off screen saver
If using Windows and Internet Explorer, you should give also the following setting:

« Turn on Allow active content to run in files on My Computer under Security settings

20.3. Preparing an Application for Testing

Vaadin TestBench can usually test Vaadin applications as they are, especially if just taking
screenshots. However, assertions on HTML elements require a DOM path to the element and
this path is vulnerable to even small changes in the DOM structure. They might change because
of your layout or Ul logic, or if a new Vaadin version has some small changes. To make such
problems less common, you can use debug IDs to refer to components.

public class ApplicationToBeTested extends Application {
public void init() {
final Window main = new Window('"Test window");
setMainWindow(main);

// Create a button
Button button = new Button("Push Me!");

// Optional: give the button a unique debug ID

Test Node Configuration 461

Vaadin TestBench

button.setDebugId("main.button");

// Do something when the button is clicked
button.addListener (new ClickListener() {
@override
public void buttonClick(ClickEvent event) {
// This label will not have a set debug ID
main.addComponent (new Label("Thanks!"));
}
)i

main.addComponent (button);
}

The application is shown in Figure 20.5, “A Simple Application To Be Tested”, with the button
already clicked.

Figure 20.5. A Simple Application To Be Tested

Push Me!
Thanks!

The button would be rendered as a HTML element: <div id="main.button"

..>...</div>. The DOM element would then be accessible from the HTML page with:
driver.findElement (By.id="main.button").Forthe label, which doesn't have a debug
ID, the path would be from the page root. A recorded test case stub for the above application is
given in Section 20.5.1, “Starting From a Stub”, which is further refined in this chapter.

20.4. Using Vaadin TestBench Recorder

The Vaadin TestBench Recorder is used for recording and exporting JUnit test stubs that you
can then develop further.

The most important role for using the Recorder is to identify all user interface elements that you
want to test - you can do all other test logic by coding. The elements are identified by a selector,
which usually use an HTML document path that selects the element. By default, the Recorder
records the paths using a Vaadin selector, where the root of the path is the application element.
The path can also be an XPath expression or a CSS selector. It can use a debug ID that you can
set in the application code.

You can play back recoded test cases and use the Recorder to make assertions and take

screenshots for screen capture comparison. Then, you export the test stubs as JUnit Java source
files which you can then develop further.

Figure 20.6. Recorder Workflow

Record Replay

462

Using Vaadin TestBench Recorder

Vaadin TestBench

The Recorder is available only for Mozilla Firefox. To run the recorded tests in other browsers,
you need to export them as JUnit tests and launch the other browsers with the WebDriver, as
described later.

20.4.1. Starting the Recorder
To start the Recorder:
1. Open Mozilla Firefox
2. Open the page with the application that you want to test

3. Select Tools Vaadin TestBench Recorder in the Firefox menu

Figure 20.7. Starting Vaadin TestBench Recorder

Tools Help
=+ Downloads CErl+Shift+Y
it Add-ons Ctrl+Shift+A
Set Up Sync...
Web Developer >
& Page Info CErl+l

}> Waadin Testbench Recorder Cerl+ALE+T

88 start Private Browsing Crl+Shift+P
4% Clear Recent History... Ctrl+shift+Del
Adblock Plus »

Manage Content Plug-ins

The Vaadin TestBench Recorder window will open, as shown in Figure 20.8, “Vaadin TestBench
Recorder Running”.

Starting the Recorder 463

Vaadin TestBench

Figure 20.8. Vaadin TestBench Recorder Running

@/ 2 Tast window - Mozilla Firefox —]o]"™ %]
File Edit View History Bookmarks Tools Help

}= localho v @ v co

]}> Test window

TS ”) @ Vaadin Testbench Recorder
ush Me!
| Fil= Edit [' Help

v vaadin

d

Command

Target LW Select

Value

Recording is automatically enabled when the Recorder starts. This is indicated by the pressed
© Record button.

20.4.2. Recording

While recording, you can interact with the application in (almost) any way you like. The Recorder
records the interaction as commands in a test script, which is shown in tabular format in the Table
tab and as HTML source code in the Source tab.

464 Recording

Vaadin TestBench

Figure 20.9. User Interaction Recorded as Commands

“) @ vaadin Testbench Recorder * |7

Target
open /bock-examplesfo...
click vaadin=bookexam...

gassertTex‘t vaadin=bookexam... Thanks!

Command | assarfText

Target | vaadin=bookexal LM Select Show

Value | Thanks!

Reference

asseriText o
Generated from getText{locator)

® |ocator- an element locator
Returns:
the text of the element
Gets the text of an element. This works for any element

Please note the following:

+ Changing browser tabs or opening a new browser window is not recommended, as any
clicks and other actions will be recorded

+ Passwords are considered to be normal text input and are stored in plain text

While recording, you can insert various commands such as assertions or take a screenshot by
selecting the command from the Command list.

When you are finished, click the '© Record button to stop recording.
20.4.3. Selectors

The Recorder supports various selectors that allow finding the HTML elements that are interacted
upon and asserted. By default, Recorder uses the Vaadin selector, which finds the elements by
an application identifier, a possible debug ID, and a component hierarchy path.

You can find elements by a plain XPath expression from the page root, an element ID, CSS style
class, etc. The selectors are exported with the JUnit test cases as corresponding Vaadin or Sel-
enium selector methods, described in Section 20.5.2, “Finding Elements by Selectors”.

Some selectors are not applicable to all elements, for example if an element does not have an
ID or it is outside the Vaadin application. In such case, another selector is used according to a
preference order. You can change the order of the preferred selectors by selecting Options
Options Locator Builders and dragging the selectors (or locators) to a preferred order. Normally,
the Vaadin selector should be at top.

Selectors 465

Vaadin TestBench

20.4.4. Playing Back Tests

After you have stopped recording, reset the application to the initial state and press k= Play
current test to run the test again. You can use the ?restartApplication parameter for an
application in the URL to restart it.

You can also play back tests saved in the HTML format by first opening a test in the Recorder
with File Open.

as low
You can use the @====- sjider to control the playback speed, click Pause to interrupt the
execution and Resume to continue. While paused, you can click Step to execute the script step-
by-step.

Check that the test works as intended and no unintended or invalid commands are found; a test
should run without errors.

20.4.5. Editing Tests

While the primary purpose of using the Recorder is to identify all user interface elements to be
tested, you can also edit the tests at this point. You can insert various commands, such as asser-
tions or taking a screenshot, in the test script during or after recording.

You insert a command by selecting an insertion point in the test script and right-clicking an element
in the browser. A context menu opens and shows a selection of Recorder commands at the
bottom. Selecting Show All Available Commands shows more commands. Commands inserted
from the sub-menu are automatically added to the top-level context menu.

Figure 20.10, “Inserting commands in a test script” shows adding an assertion after clicking the
button in the example application.

Figure 20.10. Inserting commands in a test script

Command
opEn ‘book-examplesio...
click vaadin=bocokexam...

vaadin=bocokexam... Thanks!

Command | assartText
Target | vaadin=bookexal Lyl Select Show
Value | Thanks!

Inserting a command from the context menu automatically selects the command in the Command
field and fills in the target and value parameters.

You can also select the command manually from the Command list. The new command or
comment will be added at the selected location, moving the selected location down. If the command
requires a target element, click Select and then click an element in your application. A reference

466

Playing Back Tests

Vaadin TestBench

to the element is shown in the Target field and you can highlight the element by clicking Show.
If the command expects some value, such as for comparing the element value, give it in the
Value field.

Commands in a test script can be changed by selecting a command and changing the command,
target, or value.

20.4.6. Exporting Tests

Once you have are satisfied with a test case, you need to export it as a JUnit test case stub.

You can save a test by selecting File Export JUnit Test.

Figure 20.11. Exporting Test Case as JUnit Test

(Ele)

MNew Test Case
Cpen.. Cerl+0
Save Test Case Ckrl+S |

Save Test Case As... \

Export Test Case As.. > | JUnit 4h(Vaadin TestBench)

Recent Test Cases » | E

Add Test Case... CEkrl+D

Properties...

MNew Test Suite
Open Test Suite..,
Save Test Suite

Save Test Suite As...

Close (X) Cerl+w

In the dialog that opens, enter a file name for the Java source file. The file contains a Java class
with name Testcase, so you might want to name the file as Testcase. java. You can rename
the class later.

20.4.7. Saving Tests

While exporting tests as JUnit tests is the normal case, the Recorder also allows saving test
cases and test suites in a HTML format that can be loaded back in the Recorder. Vaadin TestBench
does not support other use for these saved tests, but you may still find the feature useful if you
like to develop test cases more with the Recorder.

Exporting Tests 467

Vaadin TestBench

20.5. Developing JUnit Tests

Tests are developed using the Selenium WebDriver, which is augmented with Vaadin TestBench
API features useful for testing Vaadin applications.

Perhaps the easiest way to start developing tests is to use the Recorder to create a JUnit test
stub, which is described in the next section. The main purpose of the recorder is to help identify
the HTML DOM paths of the user interface elements that you want to interact with and use for
assertions. Once you get the hang of coding tests, you should be able to do it without using the
Recorder. Working with debug IDs and using a browser debugger, such as Firebug, is usually
the easiest way to find out the DOM paths. You can also use the Recorder just to find the paths,
and copy and paste them directly to your source code without going through the export hassle.

While this section describes the development of JUnit tests, Vaadin TestBench and the WebDriver
are in no way specific to JUnit and you can use any test execution framework, or just regular
Java applications, to develop TestBench tests.

20.5.1. Starting From a Stub

Let us assume that you recorded a simple application, as described earlier, and exported it as a
JUnit stub. You can add it to a project in a suitable package. You may want to keep your test
classes in a separate source tree in your application project, or in an altogether separate project,
so that you do not have to include them in the web application WAR. Having them in the same
project may be nicer for version control purposes.

You need to perform at least the following routine tasks:
+ Rename the package
+ Rename the class
+ Check the base URL
+ Clean up unnecessary code

A JUnit stub will look somewhat as follows:
package com.example.tests;

import java.util.regex.Pattern;

import java.util.concurrent.TimeUnit;

import org.junit.*;

import static org.junit.Assert.*;

import static org.hamcrest.CoreMatchers.*;
import org.openga.selenium.*;

import org.openga.selenium.firefox.FirefoxDriver;
import org.openga.selenium.support.ui.Select;
import com.vaadin.testbench.By;

import com.vaadin.testbench.TestBench;

import com.vaadin.testbench.TestBenchTestCase;

public class Testcasel extends TestBenchTestCase {

private WebDriver driver;

private String baseUrl;

private StringBuffer verificationErrors = new StringBuffer();

468 Developing JUnit Tests

Vaadin TestBench

The verificationErrors is used to collect some errors in some recorded commands, but
can be removed if such commands are not used. You can also use it to collect non-fatal errors,
for example screenshot comparison errors, and only fail on logic errors.

Test Setup

The set-up method, annotated with @Before, makes the basic configuration for the test. Most
importantly, it creates the WebDriver instance, which is for Firefox by default. Drivers for different
browsers extend the RemoteWebDriver class - see the API type hierarchy for the complete list.

@Before

public void setUp() throws Exception {
driver = TestBench.createDriver (new FirefoxDriver());
baseUrl = "http://localhost:8080/myapp";

}

Check that the baseUr1 is the correct URL for the application. It might not be.
Test Case Stub

The test case methods are marked with @Test annotation. They normally start by calling the
get () method in the driver. This loads the URL in the browser.

Actual test commands usually call the findElement () method in the driver to get hold of an
HTML element to work with. The button has the main.button ID, as we set that ID for the
Button object with the setDebugId () method in the application. The HTML element is repres-
ented as a WebElement object.

@Test

public void testCasel() throws Exception {
driver.get(concatUrl (baseUrl, "/myapp"));

assertEquals("Push Me!", driver.findElement (By.vaadin(

"bookexamplestobetested: :PID Smain.button")).getText());
driver.findElement (By.vaadin(
"bookexamplestobetested: :PID Smain.button")).click();

assertEquals("Thanks!", driver.findElement (By.vaadin(
"bookexamplestobetested::/VVerticalLayout[0]/"+
"ChildComponentContainer[1]/VLabel[0]")).getText());
}

The get () call appends the application path to the base URL. If it is already included in the base
URL, you can remove it.

After Testing

Finally after running all the test cases, the method annotated with @After is called. Calling
quit () for the driver closes the browser window.

The stub includes code for collecting verification errors. If you do not collect those, as is often
the case, you can remove the code.

@Aafter
public void tearDown() throws Exception {
driver.quit();

String verificationErrorString =
verificationErrors.toString();

if (!"".equals(verificationErrorString)) {
fail(verificationErrorString);

}

Starting From a Stub 469

Vaadin TestBench

20.5.2. Finding Elements by Selectors

The Selenium WebDriver API provides a number of different selectors for finding HTML DOM
elements. The available selectors are defined as static methods in the org.openga.selenium.By
class. They create and return a By instance, which you can use for the findElement () method
in WebDriver.

The ID, CSS class, and Vaadin selectors are described below. For others, we refer to the Selen-
ium WebDriver APl documentation [http://seleniumhq.org/docs/03_webdriver.html].

Finding by ID

Selecting elements by their HTML element id attribute is usually the easiest way to select ele-
ments. It requires that you use debug IDs, as described in Section 20.3, “Preparing an Application
for Testing”. The debug ID is used as is for the id attribute of the top element of the component.
Selecting is done by the By.id () selector.

For example, inthe SimpleCalculatorITCase. java example we use the debug ID as follows
to click on the calculator buttons:

@Test

public void testOnePlusTwo() throws Exception {

openCalculator();

// Click the buttons in the user interface

getDriver().findElement (By.id("button_1")).click();
getDriver().findElement (By.id("button +")).click();
getDriver().findElement (By.id("button_2")).click();
getDriver().findElement (By.id("button_=")).click();

// Get the result label value
assertEquals("3.0", getDriver().findElement(
By.id("display")).getText());
}

The ID selectors are used extensively in the TestBench examples.

Finding by Vaadin Selector

In addition to the Selenium selectors, Vaadin TestBench provides a Vaadin selector, which allows
pointing to a Vaadin component by its layout path. The JUnit test cases saved from the Recorder
use Vaadin selectors by default.

You can create a Vaadin selector with the By.vaadin () method. You need to use the Vaadin
By, defined in the com.vaadin.testbench package, which extends the Selenium By.

The other way is to use the findElementByVaadinSelector() method in the
TestBenchCommands interface. It returns the WebElement object.

A Vaadin selector begins with an application identifier. It is the path to application without any
slashes or other special characters. For example, /book-examples/tobetested would be
bookexamplestobetested. After the identifier, comes two colons ": :", followed by a slash-
delimited component path to the component to be selected. The elements in the component path
are client-side classes of the Vaadin user interfacer components. For example, the server-side
VerticalLayout component has VVerticalLayout client-side counterpart. All path elements except
the leaves are component containers, usually layouts. The exact contained component is identified
by its index in brackets.

470

Finding Elements by Selectors

Vaadin TestBench

A reference to a debug ID is given with a PID_S suffix to the debug ID.

For example:

// Get the button's element.

// Use the debug ID given with setDebugId().

WebElement button = driver.findElement (By.vaadin(
"bookexamplestobetested: :PID Smain.button"));

// Get the caption text
assertEquals("Push Me!", button.getText());

// And click it
button.click();

// Get the Label's element by full path

WebElement label = driver.findElement (By.vaadin(
"bookexamplestobetested::/VVerticalLayout[0]/"+
"ChildComponentContainer[1]/VLabel[0]"));

// Make the assertion
assertEquals("Thanks!", label.getText());

Finding by CSS Class

An element with a particular CSS style class name can be selected with the By .className ()
method. CSS selectors are useful for elements which have no ID, nor can be found easily from
the component hierarchy, but do have a particular unique CSS style. Tooltips are one example,
as they are floating div elements under the root element of the application. Their v—-tooltip
style makes it possible to select them as follows:

// Verify that the tooltip contains the expected text

String tooltipText = driver.findElement (
By.className("v-tooltip")).getText();

For a complete example, see the AdvancedCommandsITCase. java file in the examples.

20.5.3. Running JUnit Tests in Eclipse

The Eclipse IDE integrates JUnit with nice control features. To run TestBench JUnit test cases
in Eclipse, you need to do the following:

1. Add the TestBench JAR to a library folder in the project, such as 1ib. You should not
put the library in WEB-INF/1ib as it is not used by the Vaadin web application. Refresh
the project by selecting it and pressing F5.

2. Right-click the project in Project Explorer and select Properties, and open the Java
Build Path and the Libraries tab. Click Add JARs, navigate to the library folder, select
the library, and click OK.

3. Switch to the Order and Export tab in the project properties. Make sure that the Test-
Bench JAR is above the gwt-dev. jar (it may contain an old httpclient package),
by selecting it and moving it with the Up and Down buttons.

4. Click OK to exit the project properties.
5. Right-click a test source file and select Run As JUnit Test.

A JUnit view should appear, and it should open the Firefox browser, launch the application, run
the test, and then close the browser window. If all goes well, you have a passed test case, which

Running JUnit Tests in Eclipse 471

Vaadin TestBench

is reported in the JUnit view area in Eclipse, as illustrated in Figure 20.12, “Running JUnit Tests
in Eclipse”.

Figure 20.12. Running JUnit Tests in Eclipse

'*| Problems | 4L servers | El Console | = Progress | &l Console |gu Junit &2 | = B
Finished after 2,575 seconds BBl @ B =

B &E

Runs: 11 B Errors: 0 B Failures: 0

= Failure Trace

tEl testCasel (2,565 5) —

v gk

<])<> <3)< >

If you are using some other IDE, it might support JUnit tests as well. If not, you can run the tests
using Ant or Maven.

20.5.4. Executing Tests with Ant

Apache Ant has built-in support for executing JUnit tests. To enable the support, you need to
have the JUnit library junit.jar and its Ant integration library ant-junit.jar in the Ant
classpath, as described in the Ant documentation.

Once enabled, you can use the <junit> task in an Ant script. The following example assumes
that the source files are located under a src directory under the current directory and compiles
them to the classes directory. The the class path is defined with the classpath reference ID
and should include the TestBench JAR and all relevant dependencies.

<project default="run-tests">
<path id="classpath">
<fileset dir="1lib"
includes="vaadin-testbench-standalone-*.jar" />
</path>

<!-- This target compiles the JUnit tests. -->
<target name="compile-tests">
<mkdir dir="classes" />
<javac srcdir="src" destdir="classes"
debug="on" encoding="utf-8">

<classpath>
<path refid="classpath" />
</classpath>
</javac>
</target>
<!-- This target calls JUnit -->

<target name="run-tests" depends="compile-tests">
<junit fork="yes">
<classpath>
<path refid="classpath" />
<pathelement path="classes" />
</classpath>

<formatter type="brief" usefile="false" />

472 Executing Tests with Ant

Vaadin TestBench

<batchtest>

<fileset dir="src">
<include name="**/**_,java" />

</fileset>

</batchtest>

</junit>
</target>
</project>

You also need to deploy the application to test, and possibly launch a dedicated server for it.

20.5.5. Executing Tests with Maven

Executing JUnit tests with Vaadin TestBench under Maven requires installing the TestBench
library in the local Maven repository and defining it as a dependency in any POM that needs to
execute TestBench tests.

A complete example of a Maven test setup is given in the example/maven folder in the installation
package. Please see the README file in the folder for further instructions.

Installing TestBench in Local Repository

You can install TestBench in the local Maven repository with the following commands:

$ cd maven

$ mvn install:install-file \
-Dfile=vaadin-testbench-3.0.0-SNAPSHOT. jar \
-Djavadoc=vaadin-testbench-3.0.0-SNAPSHOT-javadoc. jar \
-DpomFile=pom.xml

The maven folder also includes an INSTALL file, which contains instructions for installing Test-
Bench in Maven.

Defining TestBench as a Dependency

Once TestBench is installed in the local repository as instructed in the previous section, you can
define it as a dependency in the Maven POM of your project as follows:
&1lt;dependencyé>
&1t ;groupld>com.vaadin< /groupId>
<artifactIda>vaadin-testbench</artifactId>

<version>&version.testbench;-SNAPSHOT&1t; /version>
&1lt; /dependencyé>

For instructions on how to create a new Vaadin project with Maven, please see Section 2.5,
“Creating a Project with Maven”.

Running the Tests

To compile and run the tests, simply execute the test lifecycle phase with Maven as follows:
$ mvn test

Running TestBenchExample
Tests run: 6, Failures: 2, Errors: 0, Skipped: 1, Time elapsed: 36.736 sec <<< FAILURE!

Results :

Executing Tests with Maven 473

Vaadin TestBench

Failed tests:
testDemo (TestBenchExample): expected:<[5/17/]12> but was:<[17.6.20]12>
testScreenshot (TestBenchExample): Screenshots differ

Tests run: 6, Failures: 2, Errors: 0, Skipped: 1

The example configuration starts Jetty to run the application that is tested. Error screenshots
from screenshot comparison are written to the target/testbench/errors folder. To enable
comparing them to "expected" screenshots, you need to copy the screenshots to the
src/test/resources/screenshots/reference/ folder. See Section 20.6, “Taking and
Comparing Screenshots” for more information regarding screenshots.

20.5.6. Test Setup

Test configuration is done in a method annotated with @Before. The method is executed before
each test case. In a JUnit stub exported from Recorder, this is done in the setUp () method.

The basic configuration tasks are:
+ Set TestBench parameters
+ Create the web driver

+ Do any other initialization

TestBench Parameters

TestBench parameters are defined with static methods in the com.vaadin.testbench.Parameters
class. The parameters are mainly for screenshots and documented in Section 20.6, “Taking and
Comparing Screenshots”.

20.5.7. Creating and Closing a Web Driver

Vaadin TestBench uses Selenium WebDriver to execute tests in a browser. The WebDriver in-
stance is created with the static createDriver () method in the TestBench class. It takes the
driver as the parameter and returns it after registering it. The test cases must extend the Test-
BenchTestCase class, which manages the TestBench-specific features.

The basic way is to create the driver in a method annotated with the JUnit @Before annotation
and close it in a method annotated with @After.

public class AdvancedTest extends TestBenchTestCase {
private WebDriver driver;

@Before
public void setUp() throws Exception {

driver = TestBench.createDriver(new FirefoxDriver());

}

@After

public void tearDown() throws Exception {
driver.quit();

}
}

This creates the driver for each test you have in the test class, causing a new browser instance
to be opened and closed. If you want to keep the browser open between the test, you can use

474

Test Setup

Vaadin TestBench

@BeforeClass and @AfterClass methods to create and quit the driver. In that case, the
methods as well as the driver instance have to be static.

public class AdvancedTest extends TestBenchTestCase {
static private WebDriver driver;

@BeforeClass
static public void createDriver() throws Exception {
driver = TestBench.createDriver(new FirefoxDriver());

}

@AfterClass

static public void tearDown() throws Exception {
driver.quit();

}
}

20.5.8. Basic Test Case Structure

A typical test case does the following:

1. Open the URL

2. Navigate to desired state
a. Find a HTML element (WebElement) for navigation
b. Use click() and other commands to interact with the element
c. Repeat with different elements until desired state is reached

3. Find a HTML element (WebElement) to check

4. Get and assert the value of the HTML element

5. Get a screenshot

The WebDriver allows finding HTML elements in a page in various ways, for example, with XPath
expressions. The access methods are defined statically in the By class.

These tasks are realized in the following test code:

@Test
public void testCasel() throws Exception {
driver.get(baseUrl + "/book-examples/tobetested");

// Get the button's element.

// (Actually the caption element inside the button.)

// Use the debug ID given with setDebugId().

WebElement button = driver.findElement (By.xpath(
"//div[@id="main.button']/span/span"));

// Get the caption text
assertEquals("Push Me!", button.getText());

// And click it. It's OK to click the caption element.
button.click();

// Get the Label's element.

// Use the automatically generated ID.

WebElement label = driver.findElement (By.xpath(
"//div[@id="myapp-949693921']1" +
"/div/div[2]/div/div[2]/div/div"));

Basic Test Case Structure 475

Vaadin TestBench

// Make the assertion
assertEquals("Thanks!", label.getText());
}

You can also use URI fragments in the URL to open the application at a specific state. For inform-
ation about URI fragments, see Section 12.9, “URI Fragment and History Management with
UriFragmentUtility”.

You should use the JUnit assertion commands. They are static methods defined in the org.ju-
nit.Assert class, which you can import (for example) with:

import static org.junit.Assert.assertEquals;

Please see the Selenium API documentation
[http://seleniumhq.org/docs/03_webdriver.html#selenium-webdriver-api-commands-and-operations]
for a complete reference of the element search methods in the WebDriver and By classes and
for the interaction commands in the WebElement class.

TestBench has a collection of its own commands, defined in the TestBenchCommands interface.
You can get a command object that you can use by calling testBench (driver) in a test case.

20.5.9. Waiting for Vaadin

Selenium is intended for regular web applications that load a page that is immediately rendered
by the browser. Vaadin, on the other hand, is an Ajax framework where page is loaded just once
and rendering is done in JavaScript. This takes more time so that the rendering might not be
finished when the WebDriver continues executing the test. Vaadin TestBench allows waiting
until the rendering is finished.

The waiting is automatically enabled. You can disable waiting by calling
disableWaitForVaadin() in the TestBenchCommands interface. You can call it in a test
case as follows:

testBench(driver).disableWaitForVaadin();
When disabled, you can wait for the rendering to finish by calling waitForvaadin () explicitly.

testBench(driver).waitForVaadin();

You can re-enable the waiting with enableWaitForVaadin() in the same interface.

20.5.10. Testing Tooltips

Component tooltips show when you hover the mouse over a component. Events caused by
hovering are not recorded by Recorder, so this interaction requires special handling when testing.

Let us assume that you have set the tooltip as follows:

// Create a button with a debug ID
Button button = new Button("Push Me!");
button.setDebugId("main.button");

// Set the tooltip
button.setDescription("This is a tip");

The tooltip of a component is displayed with the showTooltip () method in the TestBenchEle-
mentCommands interface. You should wait a little to make sure it comes up. The floating tooltip

476

Waiting for Vaadin

Vaadin TestBench

element is not under the element of the component, but you can find it by
//div[@class="'v-tooltip'] XPath expression.

@Test
public void testTooltip() throws Exception {
driver.get(appUrl);

// Get the button's element.

// Use the debug ID given with setDebugId().

WebElement button = driver.findElement (By.xpath(
"//div[@id="main.button']/span/span"));

// Show the tooltip
testBenchElement (button).showTooltip();

// Wait a little to make sure it's up
Thread.sleep(1000);

// Check that the tooltip text matches
assertEquals("This is a tip", driver.findElement(
By.xpath("//div[@class='v-tooltip']")).getText());

// Compare a screenshot just to be sure
assertTrue(testBench(driver).compareScreen("tooltip"));

}
20.5.11. Scrolling

Some Vaadin components, such as Table and Panel have a scrollbar. To get hold of the scrollbar,
you must first find the component element. Then, you need to get hold of the
TestBenchElementCommands interface from the WebElement with
testBenchElement (WebElement). The scroll () method in the interface scrolls a vertical
scrollbar down the number of pixels given as the parameter. The scrollLeft () scrolls a hori-
zontal scrollbar by the given number of pixels.

20.5.12. Testing Notifications

When testing naotifications, you will need to close the notification box. You need to get hold of the
TestBenchElementCommands interface from the WebElement of the notification element with
testBenchElement (WebElement). The closeNotification() method in the interface
closes the notification.

20.5.13. Testing Context Menus

Opening context menus require special handling. You need to create a Selenium Actions object
to perform a context click on a WebElement.

In the following example, we open a context menu in a Table component, find an item by its
caption text, and click it.

// Select the table body element
WebElement e = getDriver().findElement (
By.className("v-table-body"));

// Perform context click action to open the context menu
new Actions(getDriver()).moveToElement (e)
.contextClick(e).perform();

// Select "Add Comment" from the opened menu
getDriver().findElement (
By.xpath("//*[text() = 'Add Comment']")).click();

Scrolling 477

Vaadin TestBench

The complete example is given in the AdvancedCommandsITCase. java example source file.

20.5.14. Profiling Test Execution Time

It is not just that it works, but also how long it takes. Profiling test execution times consistently is
not trivial, as a test environment can have different kinds of latency and interference. For example
in a distributed setup, timings taken on the test server would include the latencies between the
test server, the grid hub, a grid node running the browser, and the web server running the applic-
ation. In such a setup, you could also expect interference between multiple test nodes, which all
might make requests to a shared application server and possibly also share virtual machine re-
sources.

Furthermore, in Vaadin applications, there are two sides which need to be profiled: the server-
side, on which the application logic is executed, and the client-side, where it is rendered in the
browser. Vaadin TestBench includes methods for measuring execution time both on the server-
side and the client-side.

The TestBenchCommands interface offers the following methods for profiling test execution
time:

totalTimeSpentServicingRequests ()
Returns the total time (in milliseconds) spent servicing requests in the application on
the server-side. The timer starts when you first navigate to the application and hence
start a new session. The time passes only when servicing requests for the particular
session. The timer is shared in the servlet session, so if you have, for example, multiple
portlets in the same application (session), their execution times will be included in the
same total.

Notice that if you are also interested in the client-side performance for the last request,
you must call the timeSpentRenderingLastRequest () before calling this method.
This is due to the fact that this method makes an extra server request, which will cause
an empty response to be rendered.

timeSpentServicingLastRequest()
Returns the time (in milliseconds) spent servicing the last request in the application
on the server-side. Notice that not all user interaction through the WebDriver cause
server requests.

As with the total above, if you are also interested in the client-side performance for the
last request, you must call the timeSpentRenderingLastRequest () before calling
this method.

totalTimeSpentRendering()
Returns the total time (in milliseconds) spent rendering the user interface of the applic-
ation on the client-side, that is, in the browser. This time only passes when the browser
is rendering after interacting with it through the WebDriver. The timer is shared in the
servlet session, so if you have, for example, multiple portlets in the same application
(session), their execution times will be included in the same total.

timeSpentRenderingLastRequest()
Returns the time (in milliseconds) spent rendering user interface of the application
after the last server request. Notice that not all user interaction through the WebDriver
cause server requests.

478

Profiling Test Execution Time

Vaadin TestBench

If you also call the timeSpentServicingLastRequest () or
totalTimeSpentServicingRequests(), you should do so before calling this
method. The methods cause a server request, which will zero the rendering time
measured by this method.

Generally, only interaction with fields in the immediate mode cause server requests. This includes
button clicks. Some components, such as Table, also cause requests otherwise, such as when
loading data while scrolling. Some interaction could cause multiple requests, such as when images
are loaded from the server as the result of user interaction.

The following example is given in the VerifyExecutionTimeITCase. java file under the
TestBench examples.

@Test
public void verifyServerExecutionTime() throws Exception {
openCalculator();

// Get start time on the server-side
long currentSessionTime = testBench(getDriver())
.totalTimeSpentServicingRequests();

// Interact with the application
calculateOnePlusTwo();

// Calculate the passed processing time on the serve-side
long timeSpentByServerForSimpleCalculation = testBench()
.totalTimeSpentServicingRequests() - currentSessionTime;

// Report the timing

System.out.println("Calculating 1+2 took about
+ timeSpentByServerForSimpleCalculation
+ "ms in servlets service method.");

// Fail if the processing time was critically long
if (timeSpentByServerForSimpleCalculation > 30) {
fail("Simple calculation shouldn't take "
+ timeSpentByServerForSimpleCalculation + "ms!");

}

// Do the same with rendering time

long totalTimeSpentRendering =
testBench().totalTimeSpentRendering();

System.out.println("Rendering UI took " +
totalTimeSpentRendering + "ms");

if (timeSpentByServerForSimpleCalculation > 400) {

fail("Rendering UI shouldn't take "

+ timeSpentByServerForSimpleCalculation + "ms!");

}

// A regular assertion on the UI state
assertEquals("3.0", getDriver().findElement (
By.id("display")).getText());
}

20.6. Taking and Comparing Screenshots

You can take and compare screenshots with reference screenshots taken earlier. If there are
differences, you can fail the test case.

Taking and Comparing Screenshots 479

Vaadin TestBench

20.6.1. Screenshot Parameters

The screenshot configuration parameters are defined with static methods in the com.vaadin.test-
bench.Parameters class.

screenshotErrorDirectory (default: null)
Defines the directory where screenshots for failed tests or comparisons are stored.

screenshotReferenceDirectory (default: null)
Defines the directory where the reference images for screenshot comparison are
stored.

captureScreenshotOnFailure (default: true)
Defines whether screenshots are taken whenever an assertion fails.

screenshotComparisonTolerance (default: 0.01)
Screen comparison is usually not done with exact pixel values, because rendering in
browser often has some tiny inconsistencies. Also image compression may cause
small artifacts.

screenshotComparisonCursorDetection (default: false)
Some field component get a blinking cursor when they have the focus. The cursor can
cause unnecessary failures depending on whether the blink happens to make the
cursor visible or invisible when taking a screenshot. This parameter enables cursor
detection that tries to minimize these failures.

maxScreenshotRetries (default: 2)
Sometimes a screenshot comparison may fail because the screen rendering has not
yet finished, or there is a blinking cursor that is different from the reference screenshot.
For these reasons, Vaadin TestBench retries the screenshot comparison for a number
of times defined with this parameter.

screenshotRetryDelay (default: 500)
Delay in milliseconds for making a screenshot retry when a comparison fails.

For example:

@Before
public void setUp() throws Exception {
Parameters.setScreenshotErrorDirectory (
"screenshots/errors");
Parameters.setScreenshotReferenceDirectory(
"screenshots/reference");
Parameters.setMaxScreenshotRetries(2);
Parameters.setScreenshotComparisonTolerance(1.0);
Parameters.setScreenshotRetryDelay(10);
Parameters.setScreenshotComparisonCursorDetection(true);
Parameters.setCaptureScreenshotOnFailure(true);

}
20.6.2. Taking Screenshots on Failure

Vaadin TestBench takes screenshots automatically when a test fails, if the
captureScreenShotOnFailure is enabled in TestBench parameters. The screenshots are
written to the error directory defined with the screenshotErrorDirectory parameter.

You need to have the following in the setup method:

480 Screenshot Parameters

Vaadin TestBench

@Before

public void setUp() throws Exception {
Parameters.setScreenshotErrorDirectory("screenshots/errors");
Parameters.setCaptureScreenshotOnFailure(true);

}
20.6.3. Taking Screenshots for Comparison

Vaadin TestBench allows taking screenshots of the web browser window with the
compareScreen() command in the TestBenchCommands interface. The method has a
number of variants.

The compareScreen(File) takes a File object pointing to the reference image. In this case,
a possible error image is written to the error directory with the same file name. You can get a file
object to a reference image with the static ImageFileUtil.getReferenceScreenshotFile()
helper method.

assertTrue("Screenshots differ",
testBench(driver) .compareScreen (
ImageFileUtil.getReferenceScreenshotFile(
"myshot.png")));

The compareScreen(String) takes a base name of the screenshot. It is appended with
browser identifier and the file extension.

assertTrue(testBench(driver).compareScreen("tooltip"));

The compareScreen(BufferedImage, String) allows keeping the reference image in
memory. An error image is written to a file with a name determined from the base name given
as the second parameter.

Screenshots taken with the compareScreen() method are compared to a reference image
stored in the reference image folder. If differences are found (or the reference image is missing),
the comparison method returns false and stores the screenshot in the error folder. It also gen-
erates an HTML file that highlights the differing regions.

Screenshot Comparison Error Images

Screenshots with errors are written to the error folder, which is defined with the
screenshotErrorDirectory parameter described in Section 20.6.1, “Screenshot Parameters”.

For example, the error caused by a missing reference image could be written to
screenshot/errors/tooltip firefox 12.0.png. The image is shown in Figure 20.13,
“A screenshot taken by a test run”.

Taking Screenshots for Comparison 481

Vaadin TestBench

Figure 20.13. A screenshot taken by a test run

T & 9 !
4 5 [.
1 2 3

L[] = C +

Screenshots cover the visible page area in the browser. The size of the browser is therefore rel-
evant for screenshot comparison. The browser is normally sized with a predefined default size.
You can set the size of the browser window with, for example,
driver.manage().window().setSize(new Dimension (1024, 768)); inthe @Before
method. The size includes any browser chrome, so the actual screenshot size will be smaller.

Reference Images

Reference images are expected to be found in the reference image folder, as defined with the
screenshotReferenceDirectory parameter described in Section 20.6.1, “Screenshot
Parameters”. To create a reference image, just copy a screenshot from the errors/ directory
to the reference/ directory.

For example:
$ cp screenshot/errors/tooltip firefox 12.0.png screenshot/reference/
Now, when the proper reference image exists, rerunning the test outputs success:

$ java ...
JUnit version 4.5

Time: 18.222
OK (1 test)

You can also supply multiple versions of the reference images by appending an underscore and
an index to the filenames. For example:
tooltip firefox 12.0.png

tooltip firefox 12.0_1l1.png
tooltip_firefox 12.0_2.png

This can be useful in certain situations when there actually are more than one "correct" reference.

Masking Screenshots

You can make masked screenshot comparison with reference images that have non-opaque
regions. Non-opaque pixels in the reference image, that is, ones with less than 1.0 value, are
ignored in the screenshot comparison.

482 Taking Screenshots for Comparison

Vaadin TestBench

Visualization of Differences in Screenshots with Highlighting

Vaadin TestBench supports advanced difference visualization between a captured screenshot
and the reference image. A difference report is written to a HTML file that has the same name
as the failed screenshot, but with . html suffix. The reports are written to the same errors/
folder as the screenshots from the failed tests.

The differences in the images are highlighted with blue rectangles. Moving the mouse pointer
over a square shows the difference area as it appears in the reference image. Clicking the image
switches the entire view to the reference image and back. Text "Image for this run" is displayed
in the top-left corner to identify the currently displayed screenshot.

Figure 20.14, “The reference image and a highlighed error image” shows a difference report with
three differences. Date fields are a typical cause of differences in screenshots.

Figure 20.14. The reference image and a highlighed error image

Push Me!

'i'hanks!

Push Me!

THis is different

20.6.4. Practices for Handling Screenshots

Access to the screenshot reference image directory should be arranged so that a developer who
can view the results can copy the valid images to the reference directory. One possibility is to
store the reference images in a version control system and check-out them to the reference/
directory.

A build system or a continuous integration system can be configured to automatically collect and
store the screenshots as build artifacts.

20.6.5. Known Compatibility Problems

Screenshots when running Internet Explorer 9 in Compatibility Mode
Internet Explorer prior to version 9 adds a two-pixel border around the content area.
Version 9 no longer does this and as a result screenshots taken using Internet Explorer
9 running in compatibility mode (IE7/IE8) will include the two pixel border, contrary to
what the older versions of Internet Explorer do.

20.7. Running Tests in an Distributed Environment

A distributed test environment consists of a grid hub and a number of test nodes. The hub listens
to calls from test runners and delegates them to the grid nodes. Different nodes can run on different
operating system platforms and have different browsers installed.

Practices for Handling Screenshots 483

Vaadin TestBench

A basic distributed installation was covered in Section 20.2.2, “A Distributed Testing Environment”.

20.7.1. Running Tests Remotely

Remote tests are just like locally executed JUnit tests, except instead of using a browser driver,
you use a RemoteWebDriver that can connect to the hub. The hub delegates the connection to
a grid node with the desired capabilities, that is, which browsers are installed in a suitable node.
The capabilities are described with a DesiredCapabilities object.

For example, in the example tests given in the example folder, we create and use a remote
driver as follows:

@Test
public void testRemoteWebDriver() throws MalformedURLException {
// Require Firefox in the test node
DesiredCapabilities capability =
DesiredCapabilities.firefox();

// Create a remote web driver that connects to a hub
// running in the local host
WebDriver driver = TestBench.createDriver(
new RemoteWebDriver (new URL(
"http://localhost:4444/wd/hub"), capability));

// Then use it to run a test as you would use any web driver
try {
driver.navigate().to(
"http://demo.vaadin.com/sampler#TreeActions");
WebElement e = driver.findElement (By.xpath(
"//div[@class='v-tree-node-caption']"+
"/div[span='Desktops']"));
new Actions(driver).moveToElement(e).contextClick(e)
.perform();
} finally {
driver.quit();
}
}

Running the example requires that the hub service and the nodes are running. Starting them is
described in the subsequent sections. Please refer to Selenium documentation
[http://seleniumhqg.org/docs/07_selenium_grid.html] for more detailed information.

20.7.2. Starting the Hub

The TestBench grid hub listens to calls from test runners and delegates them to the grid nodes.
The grid hub service is included in the Vaadin TestBench JAR and you can start it with the following
command:

$ java -jar \
vaadin-testbench-standalone-3.0.0.jar \
-role hub

You can open the control interface of the hub also with a web browser. Using the default port,
just open URL http://localhost:4444/. Once you have started one or more grid nodes,
as instructed in the next section, the "console" page displays a list of the grid nodes with their
browser capabilities.

484

Running Tests Remotely

Vaadin TestBench

20.7.3. Starting a Grid Node

A TestBench grid node listens to calls from the hub and is capable of opening a browser. The
grid node service is included in the Vaadin TestBench JAR and you can start it with the following
command:

$ java -jar \
vaadin-testbench-standalone-3.0.0.jar \
-role node \
-hub http://localhost:4444/grid/register

The node registers itself in the grid hub and you need to give the address of the hub with the
-hub parameter.

You can run one grid node in the same host as the hub, as is done in the example above with
the localhost address. In such case notice that, at least in OS X, you may need to duplicate the
JAR to a separate copy to use it to run a grid node service.

20.7.4. Mobile Testing

Vaadin TestBench includes an iPhone and an Android driver, with which you can test on mobile
devices. The tests can be run either in a device or in an emulator/simulator.

The actual testing is just like with any WebDriver, using either the IPhoneDriver or the Android-
Driver. The Android driver assumes that the hub (android-server) is installed in the emulator
and forwarded to port 8080 in localhost, while the iPhone driver assumes port 3001. You can
also use the RemoteWebDriver with either the iphone() or the android () capability, and
specify the hub URI explicitly.

The mobile testing setup is covered in detail in the Selenium documentation for both the
IPhoneDriver [http://code.google.com/p/selenium/wiki/IPhoneDriver] and the AndroidDriver
[http://code.google.com/p/selenium/wiki/AndroidDriver].

20.8. Known Issues

This section provides information and instructions on a few features that are known to be difficult
to use or need modification to work.

20.8.1.Testing the LoginForm

Replaying interactions in the LoginForm component is somewhat tricky due to the fact that the
identifier of the i frame element that is used changes each time the application is restarted. The
use of an iframe element means that recordings have to select the target frame before fields can
be correctly identified.

Selecting the correct frame in the recorder can be done by modifying the target of the recorded
selectFrame command. One way to identify the correct frame is by specifying its 0 based index:

index=2

Another way is to specify an XPath selector for the i frame. In this case it helps if you can specify
a debug ID for the LoginForm component. In the example below, the LoginForm's debug ID is
"login".

xpath=//id("login")//iframe

Starting a Grid Node 485

Vaadin TestBench

20.8.2.

20.8.3.

Selecting the correct frame in JUnit code is done like in the following example.
getDriver().switchTo().frame(2);
Or

WebElement frame = getDriver().findElement (
By.xpath("//div[@id="'login']//iframe"));
getDriver().switchTo().frame(frame);

Using assertTextPresent and assertTextNotPresent

The assertTextNotPresent and assertTextNotPresent methods in TestBench Recorder
are problematic in that they do not respect CSS rules that hide elements (e.g. display: nonej;).
This means that you might have trouble confirming that text is or is not present.

This will be fixed in a future release, but until then a better, albeit more complex, strategy for
testing whether a string is present on screen is to use the assertElementPresent method
with an XPath selector as follows:

xpath=//div[contains(@style, "display: none")]//div[contains(text(),"HIDDEN TEXT")]

Exporting Recordings of the Upload Component

Exporting recordings of the Upload component exports one piece of unnecessary code that
makes replay fail. Whenever you record a file upload, remember to remove the call to clear()
as upload fields are special fields that cannot be cleared. Also make sure that the replay window
is wide enough for the upload button to be visible (see resizevViewPortTo(), otherwise you
will get an exception when running the test.

486

Using assertTextPresent and assertTextNotPresent

